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I. [INTRODUCTION

A charge configuration that is frequently employed in Army howitzers
is the multizone, artillery propelling charge. This type of charge,

schematically 1illustrated in Figure 1, consists of several discrete r*;4
packages of propellant bound together in some fashion, as with tie _:
straps. The principal rationale for this charge design is that a Sl

particular velocity can be achieved dependent on the number of packages
loaded into the weapon chamber, and this selectable velocity, coupled with
the permitted variation of weapon launch angle, allows a wide range
coverage by indirect fire weapons.

PRIMER BASt PAD CHAMBER PROJECTILE

Figure 1. Granular-Propellant, Multiple-Increment, Bagged Charge

The requirements on the design of a multizone charge are demanding.
The charge must exhibit reliabie performance at Ehs low-zone end without
compromising performance at any other zone level. ’ A case in point is
the noyyafrminated devglopment program for the 155-mm, XM211, Propelling
Charge.”’ The XM211 employed a small-web, single-perforation propellant
in the base increment and a large-web, seven~perforation propellant in the
upper—zone Iincrements. Coupling a very rapidly burning localized-ignition

I. We May, "The Role of Ignition and Combustion: A Survey of
Developmental Efforts,” 13th JANNAF Combustion Meeting,
CPIA Publication 281, Vol. I, pp. 315-340, September 1976.

I. W. May and A. W. Horst, "Charge Design Considerations and
Their Effect on Pressure Waves in Guns,” ARBRL-TR-02277,
Ballistic Research Laboratory, USA ARRADOOM, Aberdeen Proving
Ground, MD, December 1980 (AD A095342).

T. C. Minor and J. Delorenzo, "Charge Design Approaches to the
Reduction of Low Zone Stickers,” 1976 JANNAF Propulsion
Meeting, CPIA Publication 280, Vol. IIT, pp. 403-434,

December 1976.

R. J. DeKleine, "155-mm XM211 Propelling Charge Zones 3-6
Design Review Minutes,” Office of Project Manager, Cannon
Artillery Weapons Systems, Dover, NJ, April 1980.
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source to forward packages of less rapidly burning propellant in the XM21l
led to the formation of axial pressure waves, particularly at the Zone-5
level with charges conditioned to 63°C. From this program, we once again
learned that it 18 necessary to consider all the interrelated components
that make up the charge in order to obtain satisfactory performance at all
zone levels,

The phenomenology of a multiple-increment, bag%e% charge similar to
that of Figure 1 was considered in detail previously.”® It was shown that
in addition to well-documented problems usually associated with pressure
waves in high-loading-density M203 charges, the deleterious effect in low-
loading-density charges of the impact of large quantities of propellant on
the projectile base on the projectile's safety and performance is also of
concern. Even though pressure waves themselves in this-low-loading-density
charge were not a hazard to tube or breech integrity, they have adversely
affected more delicate weapon mechanisms.

To eliminate many, 1if not all, the aforementioned problems, the charge
design community 1s seriously considering wmocdular, energetic packaging
configurations for both granular and stick propellants with special
emphasis being placed on the stick configuration. The use of stick
propellant 1in both high- a medium-performance artillery charges {is
finding increased application. The Army 1s currently introducing stick
propellant into the product-improved 155-mm, M203 (Zone 8S) charge. As
future advanced artillery weapons systems come along, the use of stick
propellant is virtually assured.

The main advantages of charges made with stick propellant are: )
reduced pressure-wave generation leading to 1improved safety; increased -
loading density, permitting the use of lower flame temperature propellants
that may reduce wear, flash, and blast; simplicity of the ignition system
with reduced ignition delay; and simplified 1loading, assembling and
packaging procedures. In Figure 2, a multizone, modular charge consisting _
of three zones is shown. y

As 1llustrated in Figure 3, one of the main advantages of modular-
charge configurations over bag-charge configurations 1s a rigid package
consisting of interlocking components, thus faciiitating automatic loading
in new weapons systems planned for the 1990s to augment the MI98 Howitzer

T. C. Minor and A. W. Horst, "Experimental Studies of Ignition
Phenomena in One-Dimensional Propelling Charges,” ARBRL-TR-02315,
Ballistic Research Laboratory, USA ARRADOOM, Aberdeen Proving
Ground, MD, April 1981 (AD A100298).

C. R. Ruth and T. C. Minor, "Multizone Artillery Propelling Charge
Studies,” ARBRL-TR-02486, Ballistic Research Laboratory, USA ARRADCOM, T
Aberdeen Proving Ground, M, May 1983 (AD Al128285). R

T. C. Minor, "Mitigation of Ignition-Induced, Two-Phase Flow s
Dynamics in Guns Through the Use of S*ick Propellant,” ARBRL-TR-02508, )
Ballistic Research Laboratory, USA ARRADCOM, Aberdeen Proving Ground, MD,
August 1983 (AD Al133685).
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shown in Figure 4. Furthermore, since the modular-charge system will .
consist of a small number of discrete module types, the propelling charge
corresponding to a desired performance level can be built up from the
increments at firing time, rather than discarding bags of propellant as is
currently done with multizone artillery charges, resulting in a propellant
and cost saviags. New processing techniques might allow for the
incorporation of additives such as wear-reducing, decoppering, flash-
reducing, etc., directly into the case, and the increased strength of
loaded, rigidized combustible cartridge cases, as compared to bag charges,
will minimize handling and transportation problems.

it Chizimibey

\

- N o I Troviect i
Figure 2. Stick-Propellant, Multiple-Increment, Modular Charge

Ui

Figure 3. Comparison of Modular Figure 4. MI198 Howitzer
and Bagged Charges System

Let us now examine, with reference to Figure 2, some of the potential
events 1in the early portion of the interior ballistic cvcle with a
combustible-cased, modular propelling charge. The output of a primer
impinges on a basepad, and the burning basepad ignites the rear case wall
of the wodule. Upon burn-through of the rear case wall, the rear of the
propellant bed 1is exposed to hot igniter gases, and 1is heated to
ignition. These hot gases then join those from the igniter and case to
produce a convectively driven ignition wave, resulting in flamespread
through the charge. 1In the situation of granular propellant, resistance to A
the gas flow may lead to the formation of a pressure gradient in the o
propellant bed, and perhaps even movement of the solid phase, as we have
previously seen for bagged granular charges.5 With the use of stick
propellant yielding a much smaller resistance to gas flow, essentially no
pressure gradient is formel in the propellant bed, and we would not expect
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the solid phase to experience much movement. However, even with the stick
propellant, there will be substantial resistance to the flow of the gases
offered by the relatively impermeable interzone barriers presented by the
case end walls, possibly leading to the acceleration of entire packages of
propellant toward the projectile base. Complicating characterization of
these phenomena, but perhaps resulting in better ignition of the charge,
the igniter gases may take the path of least resistance and flow into the
annular ullage surrounding the charge, which will almost certainly be
present in ocder to facilitate loading. We have noted such_behavior in
other combustible-cased charges employing stick propellant. In this
manner, the case may begin to burn along its length, and if the case
collapses due tc pressurization of the ullage, the propellant bed itself
may be exposed to these hot gases along a subsgtantial portion of its axial
extent, promoting uniform ignition of the charge. Lastly, we cannot
overlook the potential for fracture of the propellant, either granular or
stick, Such fracture may occur not only as a result of impact of a package
of propellant on the projectile base, but also due to attack of an overly
brisant igniter on the rear of the charge, TFurthermore, stick propellant
may rupture due to a pressure differential established between the interior
and exterior of the long grain. All of these processes serve to create
unprogrammed burning surfaces, which may lead to high local pressurization
and the formation of pressure waves, should even the natural flow channels
presented by stick propellant be obstructed,

The experimental investigations reported herein attempted to assess
the influence of 1loading conditions and variations of the interrelated
components which comprise a medium-performance, large-caliber, combustible-
cased, multizone propelling charge on pressure-wave formation. These
investigations were conducted via test firings of the charges in hoth a
well-instrumented 155-mm howitzer and a howitzer simulator.

II. TEST SETUP

A, Weagon

A 155-mm, M199 tube modified with pressure ports at thirteen axial
locations was the test weapon for all the firings. The standard muzzle
brake was replaced with a special pressure-gage adapter used in support of
a muzzle-pressure program that was conducted concurrently with the multi-
zone firings. For this weapon, the standard, lanyard-operated, spring-
driven firing pin was replaced by a gas-—activated firing pin. The gas
necessary to drive the modified firing pin into the M82 percussion primer

8 T. C. Minor and A. W. Horst, "Ignition Phenomena in Developmental Stick-
Propellant, Combustible-Cased, 155-mm, M203E2 Propelling Charges,"
ARBRI.-TR-02568, Ballistic Research Laboratory, USA ARRADCOM, Aberdeen
Proving Ground, MD, July 1984,

9

J. J. Rocchio, R. A, Hartman, and N, J, Gerri, "An Electric Primer-
Operated Firing Pin Actuator for Large Caliber Guns,'" ARBRL-MR-(2897,
Ballistic Research Laboratory, USA ARRADCOM, Aberdeen Proving Ground,
MD, January 1979 (AD A069109).

12

we.

) ALLL a

A e e




FTABLE 4. FLRING RESULTS FOR ULLAGE VARIATIONS/GRANULAR PROPELLANT*

eries Charye Variations Spindle No. Ign.
NO. Pressure ~AP Velocity Rds. Del,
(MpPa) (MPa) (m/s) (ms)

R, CRI basepad on Module A/ 281 23 695 3 51
Hole of endcaps on Mdules (5.5) (18.2)  (2.6) (19.1)
A, B, and A" opened from 22
to 51 mm/ Holes of fronts of
Modules A and B opened from 22
to 51 mm/ Yent holes (5.6-mm
diam) put in Modules A and A"
(50 holes) and in Mdule B (40
holes)/ NC spacers connected to
Modules A and B, and to B and A"

a, Similar to Series & except 283 %% J4%* 696 3 40
that vent holes 3.8-mm in (2.1) (5.5)
diameter

N Sam. as Baseline Scries 1 276%% 26%% 696** 2 47
except that modules sepa-

A PO A.'.A.l

A Al L

rated in chamber with no j
spacers keeping them from :
meving
. Same Az Series 1 except 322 65 701 1 56 .
that rodules were placed 4
At maxinvtam standoff - 10
e from spindle face .
“usandcrd deviations are given in parentheses for series with 3 or more R
roards - -4
**Averase o0 two rounds ' 4
deterwine the effects of maximum standoff, another Baseline Series |
Darge was fahricated and test-tired (Series 11, Figure 14). The results
crothe one roand tiring are shown {n Table 4. The peak pressure and —-ap, "
300 and b MPa, respectively, were much higher than observed with the
Paselice weries. The rhange in standoff from 2 to 10 cm apparently alters ' 1
e tioow o fymiter and initial combustion gases significantly. Though only
vorensd was fired, this contiguration gave the highest level of pressure
waves otoall the series tested using a one-basepad ignition source.
Molabay awecstick Propellant
' 4
. Bive liee Series/sStick Propellant, To fabricate the baseline ]
e, oth Tepe- NC containers were used.  Two of the long A modules and -
oot by e Bomedules were loaded with 2.9 kg oand 2.0 kg, respectively, -1
Pe vt sdottedsstick propellant, Endcaps were placed on all three )
prtaioor s betore theyv were fitted together into a charge consisting of
oo Modnn e A Modinie B/ Module AT (Figurs 15). As in the previous tosts, ' 1
e A e ettt the basepad  and Module AT was at the front of the .
) .:(
" .
1
.
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Figure 11, Charge/Chamber Configuration for Modular case/cranular
Propellant with Ullage Variations
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vent~hole s8ize from 5.6 mm to 2.8 mm produced a four-fold reduction in
access area of igniter and early combustion gases to propellant surfaces,
Such a reduction impeded uniform axial ignition of the charge, and, as
expected, resulted in a higher level of pressure waves.

3. Ullage Variations/Granular Propellant. Since the length of the
charge and that of the chamber differed by only 10 cm, there could be no
dramatic altering of the charge/chamber 1interface. Two  basic
configurations, charge at maximum standoff and charge modules equally
separated with NC spacers interconnecting the modules in the chamber, were
selected. Perturbations on each of these two series were also fired.
Results are noted in Table 4.

Series 8 was similar to Series 5, except that NC spacers made it almost
full-chamber length (Figure 14)., As in Series 5, the holes In the three
endcaps and the front of Modules A and B were opened from 22 to 51 mm, and
50 vent holes in Modules A and A" and 40 vent holes in Module B, all 5.6 mm
in diameter, were added to insure maximum axial and radial penetration of
igniter gases into the propellant bed. After the charge was fabricated, two
NC spacers, one coanected to Modules A and B, the other connected to Modules
B and A", were 1inserted. This increase 1in charge length reduced the
possible axial movement of the charge from 10 to 2 ecm. The results (Table
4) of this restriction on charge movement did little to peak pressure in
comparison to Series 5 (281 MPa versus 277 MPa), but substantially increased
the level of pressure waves (23 versus 8 MPa). The large standard deviation
{n -AP of 18 MPa and in ignition delay of 19 ms attested to the large
variation within the three rounds. Charge integrity was weakened by the
five-module system (Module A/NC spacer/Module B/NC spacer/Module A") since
the two 5~cm long spacers, fabricated from an existing module, did not
interlock as tightly as the modules. This could have contributed to erratic
ignition and flow of igniter and combustion gases through the system.

To determine the effect of reduced radial penetration of igriter gases
into a charge that had the sawe overall axial and radial dimensions as those
of Series 8, Serles 9 (Figure 14) was fabricated with vent holes 3.8 mm in
diameter, all other characteristics of the charge being the same as Series
8. This reduced the radial, 1{initial vent area by a factor of two. The
results (Table 4) were essentially the same as Series 8 for pressure,
velocity and ignition delay. The -AP1 was about 30 percent higher, again, a
not-surprising result.

In Serfes 10 (Figure 14), the effect of initial {ncrement position on
pressure-wave formation was addressed. The charge fabrication wused
unmodified NC modules as 1in the bhaseline series, wherein the hole in the
endcap of only Module A was opened up from 22 to 51 mm. The increments were
positioned so that Module A" was forward against the base of the projectile;
Module B was mid-chamber approximately 5 cm from the base of Module A"; and
Module A was 2 cm from the spindle face, approximately 5 cm from Module B,
No spacers were positioned between modules to keep them from moving after
ignition occurred. The averaged results (Table 4) for a two-round series
gave a peak pressure of 276 MPa and a -AP of 26 MPa which were similar to
those observed in Series B and 9. Althouéh peak pressure was about the same
as the baseline series, the level of pressure waves was considerably less,
{ndicating a more uniform fgnition of the charge.
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Filgure 13. Spindle and Forward Chamber Pressure and Pressure Difference
versus Time for Small Pressure Waves

versus 279 MPa) but a dramatic drop in the -AP, (8 versus 46 MPa). This
combination of both axial and radial enhancement of igniter gas flow into
the charge reduced pressure-wave levels sixfold. Examples of both medium
pressure waves (10 to 20 MPa) and small pressure waves (0 to 10 MPa) are
shown, respectively, in Flgures 12 and 13.

In each series, It was necessary to place a thin cloth covering over
either the 22-mm or 51-mm hole to prevent propellant from moving from one
module to another, In those serles with 51-mm openiongs, the integrity of
the cloth In preventing propellant from moving from one module to another
was suspect. In Series 6 (Figure 9), we kept the small 22-mm opening and
yet stlll maintained the large radial and axial flow of igniter gases as in
Series 5, This was done by altering the three endcaps and froats of
Modules A and B with 150 holes 5.6 mm in diameter, rather than opening the
22-mm hole to 51 mm. The results (Table 3) for the one round agreed well
with those from the Series 5 firings. Peak pressure was 281 MPa
and -AP; was 10 MPa, only slightly higher than the 8 MPa of Series 5.

S g 4

To further clarify the importance of the radial and axial vent holes
in the charge, another round similar to Series 6 was fabricated and test-
ftred. In Serlies 7, the holes in both the module sides, fronts and endcaps o
were reduced from 5.6 mm to 2.8 mm in diameter (Figure 9). Peak pressure B
was about the same as Series 6 (Table 3). The initial reverse-pressure
giradient at 16 MPa was higher than the 10 MPa of Serles 6. The change in
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versus Time for Very Large Pressure Waves

To maximize the flow of igniter gases through the charge, rounds were
constructed which minimized {interior boundaries bhetween modules. In Series
3 (Figure 9), not only was the hole of the endcap on Module A opened from 22
to 51 mm, but the endcaps on Modules B and A" were eliminated. 1In addition,
the holes on the front of Modules A and B were also opened up to 51 mm. The
results (Table 3) indicate a more uniform ignition of the propellant. Peak
pressure was about the same as in the baseline «=zries, but the -AP, was much
lower, 17 MPa versus 46 MPa. Velocity and ignition delay were in the same P

range as the baseline series. f‘~1

In an effort to further enhance the rapid ignition of all propellant
grains in the modular charges, NC centercore tubes were added in Series 4 .
(Figure 9). The 22-mm hole 1in both the three endcaps and the front of the —
modules was maintained so as to hold the centercore tubes in place. To have .
similar axial flow of igniter gases as 1in Series 3, several small cutouts .
were made in the three endcaps and the fronts of Modules A, B and A", The C
addition of the centercore tubes not only changed the flow characteristics ;' 1
of the ignition gases but somewhat redistributed the propellant in relatior -
to both the charge and initial combustion gases. There was no improvement
in the results (Table 3) of this configuration over that of Series 3. The -9
peak pressure at 288 MPa was slightly higher while the -APi of 14 MPa was
slightly lower than in Series 3. Both the increase in pressure and the
lower —APi resulted in a higher muzzle velocity for Series 4 of 698 m/s.

In Series 5 (Figure 9), the charge design was a further modification of
Series 3. Endcaps with 51-mm rather than 22-mm holes were on each of the
modules. The holes in the front of Modules A and B were also opened up from
22 to 51 mm. A layer of cloth was placed over each of these holes to keep
propellant from moving between modules. To increase radial flow of igniter
gases 1into the charge, vent holes 5.6 mm in diameter were placed in cach of
the modules. Fifty holes in Modules A and A", and 40 holes in Module B were
symmetrically placed around the cylindrical walls. The results (Table 3), -
when compared with the baseline series, show no change in peak pressure (277 -
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TABLE 3. FIRING RESULTS FOR IGNITION VAR JAT IONS/GRANULAR PROPELLANT* (CON'T)

Series Charge Variations Spindle No. Ign,
No. Pressure  -AP, Velocity Rds. Del.
(MPa) (MPa) (m/s) (ms)

6. CBI basepad on Module A/ 281 10 694 1 45

Endcaps and fronts of Mod-
ules A and B both have 150
holes (S5.6-mm diam) and
standard 22-mm hole/ Vent
holes (5.6-mm diam) put in
Modules A and A" (50 holes)
and in Module B (40 holes)

7. Similar to Series 6 279 16 694 1 40
except the holes in
sides, fronts, and end-
caps are 2.8~mm diam

*Standard deviations are given in parentheses for series with 3 or more

rounds.
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TABLE 3. FIRING RESULTS FOR IGNITION VARIATIONS/GRANULAR PROPELLANT*

Series Charge Variations Spindle No. Ign.
No. Pressure ~-AP Velocity Rds. Del.
(MPa) (MPa) (m/8) (ms)

1. CBI basepad on Module A/ 279 46 686 4 28
Hole in endcap of Module (5.3) (5.5) (0.8) (1.9)

A opened from 22 to 51 mm/
Modules A, B, and A" and
Endcaps B and A" unmodified
(Baseline Series)

2. Three CBI basepads ~ one 402 115 717 1 25
each at base of Modules of
A, B, and A"/ Hole in end-
caps A, B, and A" opened
from 22 to 51 mm

3. CBI basepad and one endcap 282 17 690 3 31
on Module A/ No endcaps (1.0) (5.1) (1.5) (3.1)
on Modules B and A"/ Holes
in endcap of Module A and
front of Modules A and
B opened from 22 to 51 mm

4. CBI basepad on Module A/ 288 14 698 3 32
Fndcaps and fronts of (2.6) (8.4) (0.6) (0.6)
modules had 22-mm hole
unmodified to support
centercore tubes/

Cutouts on endcaps and
fronts of Modules A, B and
A" to mimic S1-mm hole
in Series 1, 2, and 3

5. CBI basepad on Module A/ 277 8 693 3 34
Holes of endcaps on (2.5) (3.5) (1.7) (2.0)
Modules A, B, and A"
opened from 22 to 51 mm/
Holes of fronts of Modules

A and B opened from 22 to .
51 mm/ Vent holes (5.6-mm o
diam) put in Modules A and s
A" (50 holes) and in SR
Module B (40 holes) ’
N
*Standard deviations are given 1n parenthesis for serles with 3 or more f-f; ]
rounds. S 1
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In inventory was some l.l4-mm web MIMP propellant which was calculated
to give a peak pressure substantially less than the 0.91-mm web MIMP.
Since peak pressure and perhaps the level of pressure waves would be lower,

and thus less threatening to the integrity of the gun, this propellant was -
selected as the candidate propellant pending outcome of the initial firing ,,.‘k
tests. T

B. Modular Case/Granular Propellant

1. Baseline Series/Granular Propellant. To fabricate the baseline
series, two of the long A modules were each loaded with 2,9 kg of
propellant and one of the short B modules was loaded with 2.0 kg of
propellant. Endcaps were placed on all three containers before they were
fitted together into a charge consisting of Basepad/Module A/Module
B/Module A". Although modules A and A" were identical, the module at the
front of the charge will be referred to as A" and the module next to the
basepad as A. The total weight of the charge was 7.8 kg of the [.l4-mm
web, MIMP propellant, 85 g Clean Burning Igniter (CBI) in a basepad, and
approximately 0.84-kg Type-1, NC container. The hole in the endcap between
the basepad and Module A was opened up from 22 to 51 mm to enhance igniter
gas flow through the charge. Standoff for all four charges in Series 1 was
25 mm (Figure 9). The results from this baseline series are given in the
first entry in Table 3., The peak pressure of 279 MPa and -AP of 46 MPa
were well within the acceptable limits of gun safety for con%inuation of
further tests with this propellant. Typical plots of spindle and forward
chamber pressure and pressure difference versus time for large pressure
waves (20 to 60 MPa) are shown in Figure 10, Coil velocity and ignition
delay were 686 m/s and 28 ms, respectively.

2. Ignition Variations/Granular Propellant. Limited availability of
Type-1 NC modular components required limiting series size to three rounds.
For three of the six ignition variations, only one round was fired, either
to simply establish a trend or because of gun safety considerations,

Series 2 fabrication (Figure 9) paralleled that of Series 1 except
that three basepads were used instead of one. The three basepads, one each
at the base of Modules A, B, and A", were all on the outside of the module
with the base endcap located between basepad and propellant. The opening
in the Series 2 endcaps all were enlarged to 51 mm. Thus, the charge
consisted of Basepad/Module A/Basepad/Module B/Basepad/Module A". Again,
the charge standoff was 25mm. Propellant was restrained in each module by
placing a thin cloth covering over the vent openings. Results were
dramatically different from Series 1. Peak pressure and -AP_, rose from
279 and 46 MPa, respectively to 402 and 115 MPa. The averége pressure
difference for the second and third negative excursions were 97 and 43 Ma,
respectively, 1indicating an extremely severe pressure-wave phenomenon,
This very large reverse pressure difference (greater than 60 MPa) is shown .
graphically in Figure 11. The effect of the two additional basepads behind
Modules B and A" did not enhance ignition of the granular propellant in all
modules as intended, but rather reinforced the vigorous, localized ignition
of the cha ge, perhaps at several sites. Firings were discontinued after
one shot since both peak pressure and pressure-wave levels were large
enough to damage the tube and/or related components., All further testing
was done using one basepad.
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to by a substantifal increase in -AP (Series E) which was accompanied by a
slight 1increase in peak pressure. jSince this large -AP, in conjunction
with a large peak pressure posed serious safety problems Tor the various
parts of the howitzer, either another web of MIMP or another type of

; propellant had to be considered. The 1influence of case confinement on
pressure-wave formation (Series C thru E) prompted retesting of the M31EIMP
in modular containers (Series F). Although pressure waves were present,

E their feedback into peak pressure was not apparent in this limited testing.
I . TABLE 2. PRELIMINARY FIRINGS WITH GRANULAR PROPFLLANTS*
Charge Rationale Spindle No.
. Pressure -APi Rds. Series
: (MPa) (MPa)
'; M31EIMP Effect of 7.8-kg 132 0 4 A
bagged propellant on pressure (1.3) (0.0)
; charges and -AP,
: MIMP Effect of 7.8-kg 341 21 4 B
bagged propellant on pressure (2.9) (12.9)
charges and —APi
M1MP Effect of 7.8-kg 379 14 4 c
sub- propellant on pressure (2.9) (5.6)
caliber and -AP_,/ Effect of no
NC- axial 1nﬁib1tion of gas
sleeved flow, radial ullage
cylinder
MI1MP Effect of 7,8-kg 381 26 3 D
full- propellant on pressure (7.2) (10.3)
bore and -AP,/ Effect of no
NC- axial inﬁibition of gas
sleeved flow, reduced radial
cylinder ullage
M1MP Effect of 7.8-kg 387 50 2 E
full- propellant in modular
bore case on pressure and
modular -APi/ Effect of fully -
case combustible-cased 1
(Type 1) packaging .
M31EIMP Effect of 7.8-kg propel- 130 12 3 F ﬁﬁ
. full- lant in modular case (1.6) (3.9) o3
bore on pressure and =-AP,/ -
modular Effect of fully combus- . 4
case tible-cased packaging ]
(Type 1) ik

*Standard deviations are given in parentheses for sgeries with 3 or more
rounds -
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TABLE 1. GRANULAR MULTI-PERFORATED PROPELLANT AVAILABLE FOR TESTS

Propellant Web Length Diameter Diameter Perf
(mm) (rom) (mm) (mm)
M1SP 0.33 4.04 1.75 0.10
M1MP 0.91 11.20 4.83 0.38
M31E1MP 1.52 20.20 8.15 0.69 .
M1MP 1.14 13.49 5.92 0.43

Interior ballistic calculations for each of these available granular
propellant charges were perforﬂff using an updated version of the Baer-
Frankle lumped parameter code. The calculation for 7.8 kg of MISP
propellant indicated that it would give pressures too high for reasonable
safety. Charges with two different webs of MIMP and one web of M31EIMP
were predicted to give a wlde range of peak pressures well within the
safety limits of the gun, and thus were selected for {nitfal testing.
Pertinent data from the initial tests with MIMP (0.91-mm web) and M31EIMP
(1.52-mm web) are listed in Table 2 along with a rationale for each
particular test.

Although the M31EIMP would have brought a continuity of propellant
formulation to the program in going from 1initial tests with granular
propellant to final tests with stick propellant, the web of the readily
available M31EIMP granular propellant was too large as reflected by the
peak pressure (Series A). The MIMP seemed promising since both the peak
pressure and the pressure difference were at acceptable 1levels for
manipulating conditions within both the charge and charge/chamber interface
(Series B).

Since rigid, NC-cased modules loaded with granular propellant might
alter peak pressure and -AP_, an increasingly more stringent set of NC-case-
confinement conditions was imposed on the propellant. The initial change e
from bag to NC-cylinder confinement with no change in axial or radial SR
charge/chamber configuration, but with some change in radial flow of R
initial combustion gases because of the difference 1in bag versus case
permeability, increased peak pressure while reducing -AP, (Series C). When
radial ullage was reduced by 1increasing the NC cylinder diameter to - 4
approximately that of the modular cases to be used later in the program,
the peak pressure remained unchanged, but the level of -AP, rose
substantfally (Series D), surpassing that of the bag charges (Series B).
When modular charges with front and rear NC surfaces were used in place of
NC-sleeved cylinders, the passage of 1lgniter and initial combustion gases
through the granular bed of propellant was further restricted as attested ! 1

11 P. G. Baer and J. M, Frankle, "Simulation of the Interior

Ballistics of Guns by Digital Computer Program,” R1183,
Ballistic Research Laboratories, Aberdeen Proving Ground,
MD, December 1962 (AD299980).
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Figure 7. NC Container, Type 2 Figure 8. NC Container, Type 1

ITT. RESULTS

Preliminary firings were done with the Type-1, NC modulesm and
several granular propellant formulations and webs under consideration for
testing.  After selection of the baseline granular propellant, variations
in charge/chamber interface, ullage distribution, ignition intensity, etc.,
were made in both the granular and the follow-on stick propellants to
ascertain the extent to which they influenced pressure-wave formation as
indicated by the initial reverse pressure gradients, -AP.. Additional
tests on the more interesting cases, as determined from tﬁe gun firings,
wote repeated in the 155-mm howitzer simulator.

A. Preliminary Firings tor Selection of Granular Propellant

The modular, 7Zone-3 charge used for all these tests contained 7.8 kg
ot propellant, a substantial increase in propellant weight over our
previous work on multizone combustion phenomena. To ascertain the
interartive affects of different propellant weights and types with
different packaging configurations, several granular propel lant
formulations, locally available, were used for initial testing while
Aawaiting the fabrication of the MIEl slotted-stick propellant. Their
phivsical characteristics are shown in Table 1.

I

S. Finstein, B. Pellington, S. Westley, "Charge Design
Technologv,” Large Caliber Weapon Systems Laboratorw, USA
ARRADCOM, September [980.
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velocities required for the 155-mm, M198 and M109A2/A3 Howitzers. The
charge 1s built from two combustible-cased Increments, one with a
propellant weight of 2.9 kg (Module A) and the other with a weight of 2.0
kg (Module B). The [.3-mm web, slotted-stick propellant consisted of two °
different lengths, 24 cm for the Module . and 17 cm for the Module B
» units. For our tests, the 24-cm and 17-cm long stick propellants were
reduced in length to 23 cm and 16 cm, respectively, so that the module
endcaps could be firmly snapped in place. In this concept, the two basic
increments, one 27-cm long, the other 2l1-cm long both being 15 cm in
diameter and having wall thicknesses of 3 mm, would be added together to - e
obtain the required velocities rather than discarding increments as is done
with the present standard, bagged, multizone charge. The propelling charge
may be fired as a Zone 1 (Module A), a Zone 2 (Modules A and B), or a Zone
3 (Modules A, B, and A). A photograph of the granular MIMP and the
slotted-stick M31El propellants used for these tests 1is shown 1in Figure
6. Coples of the Propellant Description Sheets for these propellants are ®
given in Appendix A.

;m
Figure 6. Granular Propellant, MIMP, and Slotted-Stick '?:
Propellant, M31El .
o

Two types of nitrocellulose (NC) modules were used for the tests. The
present version (Type 2) 1is a molded NC cylindrical container (72-percent
NC) open at one end to allow for loading of propellant. An unvented endcap
fits snugly 1into the open end of the cylinder. This version, shown in
Figure 7, was used for all tests with stick propellant, The previous .
version (Type 1), shown in Figure 8, was a molded NC cylindrical coutainer [
(55-percent NC) which had a 22-mm vent hole in both the base of the )
cylinder and in the endcap. Extensions were structurally designed into
both the base and endcap to allow for the placement of an NC centercore
tube. When the tube was not used, a thin cloth covering was placed over
the fore and aft holes to contain the propellant. Since this early version
was readily available, 1t was used for all tests with granular propellant L )
while awaiting the manufacture and shipment of both the modular containers
and M31El slotted-stick propellant. Depending on the test condition,
modifications were made to the NC modular structure and/or the
charge/chamber interface. The modular NC containers were purchased from
the EFMC Corporation, CA. The stick propellant was purchased under
contract from Radford Army Ammunition Plant, Radford, VA, whereas the MIMP
wag obtained on post from available lots at Aberdeen Proving Ground, MD.
All charges were conditioned at 63°C for at least 24 hours prior to firing.
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was obtained from an M52A3B1 electric detonating cap. The rapid and
reproducible functioning of the M52A381 enabled 1instrumentation to be
accurately timed by this firing system. After the M52A3B1 cap was
detonated, there was approximately a 1-ms delay until the M82 primer
functioned. An M158 recoil mechanism 1in conjunction with the upper
carriage from a 155-mm, M59 gun was used to mount the APG Medium B Sleigh
which housed the 155-mm, M199 Cannon, All tests with this system were done
at the Sandy Point Firing Facility (Range 18) located at the Ballistic
Research Laboratory.

B. TInstrumentation

Instrumentation on all tests consisted of six Kistler 607C
piezoelectric pressure transducers housed in the gun chamber: two each,
side-by-side 1in the spindle; two each, 180 degrees apart at mid chamber;
and two each, 30 degrees apart at a forward chamber location (Figure 5).
These six gages were sufficient to yleld a measure of the pressure profile
in the chamber. By differencing either of the spindle and forward-chamber
pages (Pl- P5 Pl-P6, P2-PS5, P2-P6), the 1initial negative pressure
difference, was determined. Projectile velocity was calculated using
the distance between and the projectile arrival times at two solenoid coils
located approximately 20 and 35 meters, respectively, forward of the gun
muzzle. Ignition delay was defined as the time interval between the firing
pulse and a spindle pressure of 7 MPa.

Generally, the data were recorded in real time by the Ballistic Data
Acquisition System under the control of a PDP 11/45 mini-computer. If the
data were not recorded on~line because of an unusually long ignition delay
or a computer malfunction, they were later digitized from an analog
vecording made of each test firing.

r
S PIR —
mf,.[j; wg
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Pt@
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Figure 5, Locations of Pressure Transducers in M199 Chamber

C. Firing Components

M549A1 Projectiles from Lot 10878E001S066, inert loaded with wax to
43.6 kg, were used for all tests. Projectile weight and rotating band
condition (burrs, 1indentations, etc.) were ascertained prior to loading
into the howitzer; projectile seating distance was measured prior to
lnading the propelling charge.

The XM216 Propelling Charge, a version of which 1s shown in Figure 3,

is currently wunder development by the Large Caliber Weapon Systems
Laboratory to serve as the next-generation zoning solution for the midrange
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charge. The total weight of the charge was 7.8 kg of propellant, 85 g of
CR1 igniter, and approximately 0.84 kg of Type-2, NC container. Standoff
for the three rounds in the series was 2.5 cm. Combustion {irregularities
were almost nonexlstent as attested by the small -AP, of 2 MPa (Table 5).
Both spindle and forward chamber pressure traces were smooth with only a
glight pressure-wave undulation superimposed on the pressure. Coil velocity
for the series was 699 w/s. Ignition delay at 40 ms was slightly larger
than for the baseline series with granular propellant.

Since pressure-wave phenomena were almost nonexistent, modifications to
the modules as in the earlier tests with granular propellant to change the
flow of igniter and early combustion gases Into the charge were deemed not
necessary. Therefore, ullage rather than igniter variations were examined
first to see If pressure-wave phenomena of a serious nature could be
induced.

2. Ullage Variations/Stick Propellant. Variations in charge/chamber
configuration were limited because the charge was radially almost as large
as the chamber (14.7 cm versus 16.5 cm for the chamber), and axially only
13.6 cm shorter than the chamber. Within these limited confines, three
additional series were tested.

Series 2 was fabricated exactly like the baseline series. The charge
was positioned at maximum (13.6-cm) rather than standard (2.5-cm) standoff
(Figure 15). Firing results are shown in Table 5. Both peak fressure
and -AP, increased substantially from the baseline series. Spindle pressure
and —APi were, respectively, 276 and 12 MPa. Although there was a six-fold
increase in -AP, it was still low in relation to those encountered with
granular propellants. The lncrease in peak pressure was manifested also in
a coll velocity of 704 m/s, which was considerably higher than Series 1.
Ignition delay at 46 ms was about the same as the baseline series.

For Series 3, the modules were spaced in the chamber so that Module A
was at 2.5-cm standoff, Module B was approximately 6 cm forward of Module A,
and Module A" was 6 cm forward of Module B, just touching the base of the
projectile. There were no spacers between the three modules to prevent
movement after initial ignition of the charge (Figure 15). Results (Table
5) were essentially midway between Series 1 and 2 with a peak pressure
and -AP,, respectively, of 266 and 8 MPa, Again, slight changes 1{n the
charge/ ! chamber configuration made noticeable changes 1In the combustion
characteristics of the charge. Coll velocity and ignition delay were 695
m/s and 43 ms, respectively.

To ascertain whether initi{al increment placement rather than Increment
movement could induce large pressure waves, a slight varlation on Series 3
was made. Series 4 was similar to Series 3, except that 6-cm long,
cardboard spacers were Iinserted between Modules A and B and between Modules
B and A" to Impede Increment movement after initial ignition of the charge
(Figure 15). Results, which are listed in Table 5, indicate that pressure,
veloclity, and 1ignition delay were essentlally the same as Series 3.
The -AP was reduced somewhat from 8 MPa 1In Series 3 to 5 MPa in this
series, = The lower standard deviation on all variables except ignition delay
may be an indficatlon of slightly more stability for the restricted modules
over the unrestricted ones.
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CBl BASEPAD

MULTI-ZONE MODULAR CHARGE —
STICK PROPELLANT

ENDCAPS AND MODULE FRONTS
FOR A B & A(NO VENTS)

(Series 1)

' A B A" I

7|

\
\—w BASEPAD

MULTI—ZONL MODULAR CHARGE
STICK PROPELLANT

EMDCAPS AND MOOLLE FRONTS
FOR A, B & A“(NO VENIS)

(Seriec 2)

! 1 A B A" [; |
l .

AN
xw HASEPAD

NO SPACERS
MULTI-ZONLC MODULAR CHARGE
STCK PROPELLANT

[—l UNDIRES SEPARAILO, \X

ENDCAPS AND MOODULE tRONTS
FOR A 8 & A"(NO VENTS)

(Series 3)

~NA ' ==
I/ A A s N A

Cor BASEPAD é/u7oouus SEPARATED,

CARDOOARD SPACERS
MULTI-ZONE MODULAR CHARGE
STICK PROPELLANT

CNDCAPS AMD MODUA € FRONTS
FOR A @ & A"(NO VENIS)

(5~ries 4)

tharpe/Chamber Configuration for Modular Casc/Stick Propellant

with Ullage Variations
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TABLF 5. FIRING RESULTS FOR ULLAGE VARIATIONS/STICK PROPELLANT*

Series Charge Variations Spindle No. Ign.
No. Pressure -APi Velocity Rds. Del,
(MPa) (MPa) (m/s) (ms)

1. CBI basepad on Module A/ 260 2 699 3 40
Indcaps on Modules A, B, (3.8) (1.0) (2.1) (5.5)

and A"/ 2.5-cm standoff/
Baseline Series

2. Charge configuration same 276 12 704 3 46
as Series 1/ Charge at (7.0) (3.6) (3.1) (4.0)
maximum standoff (13.6 cm)

3. Module loading same as 266 8 695 3 43
Series 1/ Modules (8.5) (3.8) (10.4) (1.5)

separated by 5 cm/ Module
A at 2-cm standoff/ Module
A" touching base of
projectlle

4, Charge configuration same 268 5 698 3 38
as Series 3/ Cardhoard (1.5) (1.7) (2.9) (5.5)
spacers used to keep
modules separated

*Gtandard deviations are given in parentheses for series with 3 or more
rounds

3. Ignition Variations/Stick Propellant. Five basepad variations
were tested to determine the effect of initial ignition stimulus on charge
performance. The 1inteat was to dramatically change the fgnition
characteristic of the charge so as to 1Induce, {f possible, 1ignition
variations leading to pressure-wave formation.

Series 5 (Figure 16) was fabricated exactly like the baseline series
except that the basepad was 85 g of Class 1| Black Powder instead of CBI.
Charge standoff was 2. S cm. The results are shown in Table »n. Peak
pressure at 268 MPa, at 2 MPa and coil velocity at 697 m/s, were
pssentfally the same as ghe baseline serles. As expected, ignition delav
was reduced substantially over the haseline series.

To create a more brisant Ignition source, 85 g of Class S5 Black Powder
was used in Series 6. All other characteristics of the system were the same
as ln Series 5 (Figure 16). Peak pressure and velocity were about the same
as in Series 5 (Table 6)., Although -AP, at 7 MPa was threefold higher than
Serfes 5, it was still much lower than that observed with rost of the
granular charges. The ignition delay of 15 ms was the lowest observed for
anpy serles tested in this project,

With the adveat of modular charges that are to be loaded Into howitzers
by automatic mechanisms, the possibility exists that modules could be
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MULTI- ZONT MODULAR CHARGE - ™
STICK PROPLLLANT
CHOCAPS AND MODWE TRONTS
FOR A, O & A“(MO VENIS)
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)
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AN
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cot BAS[PAD——I

MULTI-ZONE MODULAR CHARGC
STICK PROPELLANT

ENDCAPS AND MODWLE FRONTS
FOR A 8 & A"(NO VENTS)

(Savins R)

COl BASEPAD \

MULTI-ZONF MODULAR CHARéZEk
STICK PROPELLANT

NO ENDCAPS / MODUIE FRONTS
FOR A, B & A(VENTS)

CHl BASEPAD

PO U Wy

MULTI-Z0ONE MODULAR CHARGE ~
STICK PROPELLAHT

NO NC MNDWRES / STICX PROPELLAMT N DUVDITS
(aving 11)

Figure 16,  Charge/Chamber Configuration for Modular Case/Stick
Propellant with [gnition Variations
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misloaded with the basepad at a mid- or forward-chamber position or possibly

not 1in the system at all. To ascertain the effects on ignition and

combustion of charges with no basepad, Series 7 was constructed exactly as
) Serles 5 except that the basepad was eliminated (Figure 16). Results, as
i shown 1in Table 6 Indicate no change 1in peak pressure or velocity. The )
\ initfal reverse pressure gradient at 1 MPa was reduced twofold over Series

5; sevenfold over Series 6 and, thus, was one of the lowest recorded for any

series tested in this project. As expected, the ignition delay increased

substantially to 200 ms.

[RNS
l : TABLE 6. FIRING RESULTS FOR IGNITION VARIATIONS/STICK PROPELLANT* ) )
4
Series  Charge Variations Spindle No. Ign. '
No. Pressure -AP Velocity Rds. Del.
(MPa) (MPa) (m/s) (ms)
- <
E 5. Class 1 Black Powder 268 2 697 3 29 '

Endcaps on Modules A, B,

1
basepad on Modules A/ (5.5) (0.6) (1.5) (3.1) : ]
and A"/ 2.5~cm standoff ]

: 6. Charge configuration same 266 7 698 3 16 - e
. as Series 5/Class 5 Black (7.2) (5.1) (2.9) (1.5) ' )
Powder basepad "
‘ 7. Charge configuration same 266 1 698 3 200 -]
: as Series 5/ No basepad (3.2) (2.3) (3.8) (57.1) o
M
d 8. Charge configuration same 275 0 706 1 342
as Series 1 except CBI
basepad on front of
Module A™
~ 9. Three CBI basepads - one 259 4 704 3 38 -:33
i each at base of Modules (6.8) (3.2) (3.6) (7.2) ﬂ
A, B, and A"/ Modules and
endcaps unmodified g
10. CB1 basepad on Module A/ 264%% 2%% 698%*% 2 32%*
No endcap on Module A, B,
| J and A"/ Fronts of Modules
A, B, and A" opened up with ) 1
ll~em hole -
1. No NC module/ Stick 232%% Ok 670%* 2 gerx RN
, Propellant tied in SN
» - bundles/ CBI basepad - j
. *Standard deviations are glven in parentheses for series with 3 or more L
- rounds j~[}f
. **Average of two rounds :}j:
. -
N 31 :E:‘j_'.*
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The single firing for Series 8 depicts the effect of having the CBI
basepad at the front of the charge. Pressure and velocity at 275 MPa and
706 m/s, respectively, were similar to Series 2 where the charge was at
maximun standoff. Unlike Series 2, -AP, did not increase but was 0 MPa.
Ignition delay at 342 ms was the longest for any series fired even
surpassing that of Series 7 where no basepad was used, Series 9 shows the
opposite extreme from Series 7 wherein 3 basepads, one each at the basge of
Modules A, B, and A", were loaded into the howitzer (Figure 16), The
cegults (Table 6) of this test, simulating another case of migloading the
howitzer, again suggest a very safe and forgiving charge. Pressure,
ignition delay and -AP, at 259 MPa, 38 ms and 4 MPa, respectively, were
similar to Series 1, tﬁe baseline configuration. Velocity at 704 m/s was 5
m/8 higher than the baseline series thus being more comparable to Series 2
{charge at maximum standoff) and Series 8 (CBI basepad in front of Module
A").

As suggested by the very low -AP, for all of the series tested, near
simultaneous ignition of the stick™ propellant charges appears to bhe
occurting even though the propellant 1is packaged in unvented NC modules. In
Series 10, rapid axial flow of igniter gases over the propellant sticks was
enhanced by eliminating both the endcaps and opening up the fronts of
Modules A, B, and A" with an ll-cm hole (Figure 16). These results (Tabhle
6), when compared to those from Series 1, suggest that the effects of axial
confinement preventing rapid flow of igniter gases 1into a stick propellant
charge that is not tightly constrained within the NC tube are minimal., When
the NC container was completely eliminated (Series 11, Figure 16) the
reduced energy of the system in conjunction with a slizhtly larger free
volume reduced, substantially, the peak pressure andl thus the velocity
(Table 6), a result corroborated by lumped-parameter 1interior ballistic
calculations. TIgnition delay 1lacreased 30 percent over the haseline series
to 66 ms, Not only were pressure-wave phenomena nonexistent, the pressure-
time profile was the smoothest for any series fired. Apparently, even to
Zenerate the small pressure waves noted 1in most of the series, the stick
propellant has to either be confined in the NC module or tightly constrained
in bundles thus reducing the radial flow of 1igniter gases through the
charge. Neither condition was present for the two rounds in Series 11.

D, 155-mm Howitzer Simulator Tests

The apparatus used to conduct a variety of studfes at the BRL of the
detailed phenonmenology of propelling charges 1is shown in Figure 17. The
massive mount, constructed of armor plate, accepts either plastic chambers
or axially reinforced, filament-wound fiberglass chambers, The plastic
chambers used were commercilally available cast acrylic tubing with Llnner and
outer diameters of 165 mm and 191 mm, respectively. Although the clear
plastic fractures at significantly lower pressures than the fiberglass
chambers, they offer a much better view of the events transpiring within,
and thus were used for thls study. The muzzle end of the chamber was closed
by a projectile seated in a section of gun tube machined to the dimensions
of the MI99 Cannon. The breech end of the chamber was closed by a spinile
similar to the mushroom conflguration of the M185 Cannon with the centrallr
venting primer spithole, The spinile accepted three plezoelectric pressure
transducers, An  instrumented projectile permitted yas pressure, total
force, and acceleration measurements to be made at the projectile base,
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Figure 17. 155-mm Howitzer Simulator, Plastic Chamber

Photographic data were recorded with a high-speed 16-mm camera. Data
were recorded at a framing rate of approximately 5000 pictures per second.
A one-kHz timing signal was placed on the film by electronics internal to
the camera, and the firing fiducial (time at which the firing voltage was
applied to the gun) was also placed on the films to aid in correlation of
the film data with other data.

Flash X-rays were used on these tests to monitor the movement of the
solid phase. For one shot, a total of four, 300-kV X-ray heads was used,
two at one axial location, separated by approximately twenty degrees (see
Figure 18), and another two at a further axial location, similarly
separated, to cover the length of the tube. The overlapping images from the
two sets of heads were rec .rded on a single sheet of film, yet it was
possible to determine the X-ray source of each image. One image was created
by X-rays triggered at a predetermined spindle pressure, and the second
image was made by the X-ray heads triggered at a predetermined time delay
afcer the first. For the stick-propellant test, only one image was recorded

using two X-ray heads to improve the clarity of the radiograph. The
radiographs were recorded on Kodak XR-5 film using Dupont Lightning Plus
intensifier screens. The film was protected from the blast of the

disposable chamber by a wooden cassette, with the forward face composed of
layers of air spaces and sacriticial wooden plates.

The two charges selected for testing in the fixture were the baseline
configurations for both the modular/granular (Series 1, Table 3) and
modular/stick (Series 1, Table 5) propellants. These charges represented a
tenfold variation in -AP, and a threefold variation in ignition delay. An
overview of the data is p%vsontod below.

Data were obtained for the yranular-propellant charye up to a spindle
pressure of 17 MPa. The high-speed film showed the functioning of the M2
Primer at about 1.5 ms after application of the firing voltage. At 2 ms,
the rear ullage was full of flame. Bv 5 ms, a luminous front traversed the
length of the chamber in the top annular ullage, and was then reflected
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toward the spindle. After arrival of this reflection in the spindle region,
all luminosity disappeared, and several oscillations of smoke in the annular
ullage were seen. The chamber remained dark until after 50 ms, but by 55 ms
there was a very bright luminosity at the spindle end of the charge. At 58
ms, a plume of flame escaped from the front of the charge in the area of the
hole in the forward end of Module A". The luminosity increased such that it
was very intense at both ends of the chamber at 60 ms, and the flame started
moving into the annular ullage from the rear of the charge at about 61 ms.
The flame then continued to fill the chamber until the plastic tube
ruptured, without any obvious indication of combustible case fracture or
substantial movement of the charge. The flash X-ray recorded at about 4 MPa
showed that the charge had moved forward approximately 50 mm. The rear of
the charge was lifted off the bottom of the chamber so that it touched the
top of the chamber. The "A" module was raised slightly off the bottom of
the chamber. The granular propellant was seen to fill nearly the entire
volume of the wmodules, and the walls of the cases appeared to bhe {intact,
{acluding the endcap of Module A which was next to the basepad igniter.
There were no obvious traces remaining of the igniter itself. A flash X-ray
recorded at a pressure of approxiamtely 8 MPa showed the same features as
the one shot at 4 MPa, except that the charge had moved forward an
additional 5 mm.

BALDAS

EXPERIMENT
CONTROL l

DATA ACQUISITION (¢ TP X-RAY

DATA REDUCTION TRIGGER

1 HIGH SPEED o
| CAMERA -
¥ < e
X-RAY __, 1 =
CASSETTE 1 i
il -]
Ll .
]
X-RAY HEADS .

Figure 18. System for Experiment Control, Data Acquisition,
and Data Reduction, 155-mm Howitzer Simulator
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Data were obtained for the stick-propellant charge up to a spindle
pressure of 16 MPa. As with the granular charge, the high-speed movie
showed the functioning of the primer, ignition of the basepad, and an
nscillation of 1luminous gases in the annular ullage, at about the same
t imes. However, the intensity of the luminosity of the combustion of the
bascpad appeared to be much less intense than with the previous shot. Again
after the luminous oscillation, the chamber became dark with only smoke
visible. At 38 wms, luminosity appeared at the spindle and front of the
chamber, without traversing the annular ullage in view of the camera. By 40
ms, the flame at the front of the chamber was very bright, and started
moving through the annular ullage toward the rear of the chamber. At 42 ms,
the rear of the charge was lifted from the bottom of the chamber, and the
top casewall of Module A perhaps was ruptured. By 44 ms, luminous gases
were swirling into the annular ullage from the rear of the charge, and it
appeared that the case of Module B perhaps was collapsed. Just prior to
failure of the plastic chamber, it appeared that the casewall of Module A
was blown out tn the wall of the chamber through the top annular ullage.
Also prior to the failure of the chamber, the intense luminosity inside the
modules illuminated them from within, and though propellant grains could not
ho seen, the reinforced areas of the modules at their overlap points were
readilv discernible. Due to a test failure, a radiograph was not recorded
for the shot just described, but a second test firing of an identical charge
in the simulatoc provided a flash X-ray recorded at about 7 MPa. It showed
that the rear of the charge was elevated well off the bottom of the chamber
and the forward end was slightly lifted., The charge moved axially about S50
mm from the initial loading position. The top of the case of Module A was
pushed out into the annular ullage, the case of Module B remained intact,
and the top sidewall of Module A" was collapsed down upon the stick-
propellant bed. There were some twists of either propellant or case
material in the annular ullage in the region of the juncture of Modules B
and A". The endwall of Module A, initially next to the basepad, was not In
evidence.

IV, CONCLUSIONS

In this study, the influence of charge interzone permeability,
distribution of ullage, charge increment movement, igniter brisance and/or
placement on the formation of pressure waves for modular charges employing
both granular and stick propellant was investigated. These parameters were
noted as those likely to cause ignition and early combustion problems, based
on our previous work with bagged, multizone configurations.

Within the range of parameters studied and sample sizes of the series,
the results indicate a distinct performance difference bhetween modular

charges employing granular and stick propellants. The modular charges
fabricated with granular propellant, vregardless of the charge/chamber
configuration, generally gave large pressure-wave levels. Cnly after

extensive modifications to the modular container to enhance both the radial
and axial flow of igniter gases into the body of the granular-propellant bed
did the level of pressure waves lessen from large to medium or small
levels. The stick propellant, regardless of charge/chamber configuration,
type of basepad igniter or, indeed, no igniter at all, gave pressure-wave
levels that were small without any modifications being made to the modular
container,
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The overwhelming conclusion reached from this study 1s that the
multizone, modular charge with stick propellant has good ignition and
combustion characteristics that are not affected, substantially, by the
charge/chamber interface or by ignition variations. Future studies will
concentrate on the effects of low temperature and parasitic components in
the module on ignition and combustion characteristics of the charge.
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APPENDIX C

Plots of Spindle Pressure (Solid Line), Forward Chamber Pressure
(Dashed Line), and Pressure Difference Versus Time
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® APPENDIX B

Tabulation of Firing Data for Modular Case/Granular Propellant and
Modular Case/Stick Propellant for all Series Configurations
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PROPELLANT DESCKIPTION SHEET

TLPORTE CONTROL STMBCT ]

EXEMPT-PARA 7-2a
AR 335-

COMPOSITION

M31ALE!L

Slotted Stick(NOMINAL 1OT)

DA LOT NUMBER

RAD-PE-480-90

SPECIHICATION

COR lttr SARRA-EN dtd 10/6/82 & 11/29/82

PACXED AMOUNI

10,200 Pounds

CONIRACT NUMBER

DAAAOS 77C 4007

mG At RADFORD ARMY muumnuﬂ PLANT, RADFORD, VKA.

L - NITROCELLULOSE - BT
ACCEPTED BLEND NUM NITROGEN-CONTENE |  Ki STARCH- |  STARBILITY (134.5°C)
. [65.5°C)
B30955 B30956 B30960 max_12.58 = MIN MIN
win 12.50 __« MIN MIN
B30963 B30964 B30966 avg _12.52 z| _45+ W 30 MIN
EXPLOSION we
S b + MANUFACTURE OF:SOLVENT PROPELLANY:: o
0.1 Z& POUNDS SOLVENT PER POUND NC/ORY WEIGHT INGREDIENTS cONsISTING Of __00) . rounps alcowor ano 40 POUNDS
Acetope pir 100 POUNDS SOLVENT PERCENTAGE REMIX 1O WHOLE
u‘é‘;"“““"’ N “PROCESS-SOLVENT RECOVERY: AND DRYING 5E7S "'“Nou"
Ambientd Ambient Ambient Conditioning 48
Ambiend 120 Increase at 5° per Hour
[ 120 120 Hold 9
120 rhient
PRCPELLANT COMPOSITION 1 STABILTY AND PHYSICAL TESTS
TR I
Heat 1ist No CC 40" 60+
Nitrocellulose 22.20 1.3 21.91 No Fumes 60' &0
Nitreoglvcerin 19.00 .0 19.48 FORM OF PROPELLANT
Nitroguanidine 53.70 *1.0 53,28
HOE cal/gm nla 36.50
Dibutvlphthalate 2.70 +0.3 2.98
Ethvl Centralite 1.40 +0.3 1.32 veg Stick wt-ems n/a 30.00
Potassium Sulfate 1.00 *0.3 1.03 Std Dev -gms n/a 0.931
Total 100.00 - No Trials n/a 100
Total Volatiles (TV n/a Q.15 |Absolute Density 1.63
Carbon Black 0.11* g/cc
o - CLOSED BOMB - iy s .. PROPELLANT DIMENSIONS - finches) -« ~
LOT NUMBER TEMP °F QU|(K’)’J¥§S ;('317('{‘ olhsl'.l)onoévn:'n?oa!
e SPEQFICATION DI FINISH ED SPEC ACTUAL
LENGTH (L} 29 29 28.81 n/a 0.33
PE-480- 90 |+90 03.16 | 120.95 Joumerer oy | 0.234__ [0.259 | 0.23 n/a 11 oe
PERF. DIA. (d) 0.079 0.086 (79 DA TES
STANDARD 70077 100 00% 100.00%
LEMARKS Web 0.078 0.087 QRO J"A<xé0 1/13/83
SAMPLED 1]13/83
TEST AN
/wi:} g;’i"v::"x. OFFERED 52%/83
of Web Avg. N/A N/A
Lo 123.93 111,971 17" S48 W aasen '
Dd 2.96 3.01) 2.5 3-7-83 |
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CERTIPICATE OF COMPLIANCE AND ANALYS8IS

-
n BLACK POWDER, POTASSIUM NITRATE (xominal Lot) pATE PACKED__ &/ /95 /

0
SODIUM NITRATE LoT NuMBER NOMTNAL
specirrcarion /7). / Fael
GRADE/CLASS c-5
. I'

CHEMICAL AND PHYSICAL REQUIREMENTS
SPECIFICATION LINITS  ANALYTICAL RESULTS

1 MAXIMUN MINIMUM SAMPLE 1 SANPLE 2
- XIIBTURE 0.70 % L) O.527% o5/

ANALYSIS - DRY BASIB:
Potassium Nitrate 75.0 »
Sodium Nitrata

73.0

Sulfur %,%
Charcoal 6 . EEE
xzx

Calcium Carbonate
Semi~Bituminous Coal
Total xX

ASH 0.80% () O,5 8 oY s
SPECIFIC GRAVITY /.80 172 1277 1781
APPARENT DENSITY > = o2 lLol

(4

3
N
‘t‘
£

.GRITTY OR FIBROUS PARTICLES

GLAZE
GRANULATION s
On U.§, 8td. /& J.0 Y 1,9 a./ s
On U.S. Std. — - — -
ThruU.8. Std. — —_ -_— -
Thru U.8. 8td. ¥o 5.0 3,9 3.2

Date Tested éZAéZﬂB/

Book No.

Order No.
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MODULES HAVE CENTERCORE TUBES
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SERIES 4, MODULAR CHARGE/ GRANULAR PROP., MODUL.®36
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" GERIES 2, MODULAR CHARGE/STICK PROP.,

CHARGE AT MAXIMUM STANDOFF

MODUL . 859
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SERIES 2, MODULRR CHARGE/STICK PROP., MODUL.®58
co CHARGE AT MAXIMUM STANDOFF
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SERIES t, MODULAR CHRARGE/STICK PROP., MODUL.Q79
BASELINE SERIES
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SERIES 1, MODULAR CHARGE/ STICK PROP., MODUL.978
BASELINE SERIES
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SERIES 1, MODULRAR CHRRGE/STICK PROP., MODUL.077
BRSELINE SERIES
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SERIES 11, MODULAR CHARGE/GRANULAR PROP., MODUL.DSY 'f
3“MQXIMUM STANDOFF/SAME AS BRSELINE SERIES A )
320 - = :
300 b
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260 ;.-;f
a  2ue T
& 200 y
206 s
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%J 1604 ,.*
a 14Q-
2 120
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SERIES 10, MODULAR CHRARGE/GRANULAR PROP., MODUL.DS3 .j
HODU%&S SEPRRATED/NO SPRACERS/SAME RS BRSELINE SERIES R
2804 ,'4
2601 o 4
Q“OJ _ :
~ 2204 . 3
& 2004 e
z . ;
S s
o 160 _ 1
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SERIES 16, MODULAR CHARGE/GRANULAR PROP., MODUL.DS3
MODUL&S SEPARATED/NO SPACERS/SAME AS 3ASELINE SERIES
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SERIES 10, MODULAR CHARGE/GRRNULAR PROP., MODUL.DS2
HODU%&S SEPRRATED/NO SPACERS/SAME AS BASELINE SERIES

280
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SERIES 10, MODULAR CHARGE/GRANULAR PROP., MODUL.DS2 »
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SERIES 9, MODULRR CHARGE/GRANULAR PROP., MODUL.OY6
3.%ﬁHM HOLES IN MODULES(SEPARRATED BY NC-SPACERS)
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2601 " \\ L
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Difference could he calculated.
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SERIES 8, MODULAR CHARGE/GRANULAR PROP., MODUL.@YS
Q.g&MM HOLES IN MODULES(SEPRARRTED BY NC-SPACERS)
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SERIES 9, MODULAR CHARGE/GRANULAR PROP., MODUL.OQUS
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SERIES 9, MODULAR CHARGE/GRANULAR PROP., MODUL.O44

3.%5HM HOLES IN MODULES(SEPRRATED BY ‘NC-SPACERS)
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SERIES 9, MODULAR CHARGE/GRANULRR PROP., MODUL.OQUU
3.8&pM HOLES IN MODULES(SEPRRATED BY NC-SPRCERS)
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SERIES 8, MODULAR CHARGE/GRANULAR PROP., MODUL.Q43
S'EQMM HOLES IN MODULES(SEPARATED BY NC-SPACERS)
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SERIES 8, MODULAR CHARGE/GRANULAR PROP., MODUL.0QU2
S.QQMH HOLES IN MODULES(SEPARATED BY NC-SPRCERS)
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SERIES 8, MODULAR CHARGE/GRANULAR PROP., MODUL.QY2
S.S%MM HOLES IN MODULES(SEPRRATED BY NC-SPACERS)
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g ~ SERIES 3, MODULAR CHARGE/STICK PROP., MODUL.062
g o MODULES SEPARATED, NO SPACERS :
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SERIES 3, MODULAR CHARGE/STICK PROP., MODUL.@62
MODULES SEPARATED, NO SPACERS
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SERIES 3, MODULAR CHARGE/STICK PROP., MODUL.®B3
400 MODULES SEPARATED, NO SPACERS
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SERIES 3, MODULAR CHARGE/STICK PROP., MODUL.o6Y o]
v 200 MODULES SEPARATED, NO SPRCERS L
ﬂ 280 Y |
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f SERIES 3, MODULAR CHARGE/STICK PROP., MODUL.O6Y
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SERIES 4, MODULAR CHARGE/STICK PROP., MODUL.071
%QRDBOQRD SPACERS BETWEEN SEPARATED MODULES
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["""SERIES 4, MODULAR CHARGE/STICK PROP., MODUL.O71
CARDBOARD SPACERS BETWEEN SEPARATED MODULES
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SERIES 4, MODULAR CHARGE/STICK PROP., MODUL.B72
£9RDBORRD SPACERS BETWEEN SEPARATED MODULES
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SERIES 4, MODULAR CHRARGE/STICK PROP. , MODUL.073 g
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SERIES 5, MODULAR CHRARGE/STICK PROP., MODUL.06S

s00 CLASS 1, BLACK POWDER BRSEPAD

280
2604
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180
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] 100
80-
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‘5 20 s 30 38 4o 45
TIME (MS)

SERIES &, MODULAR CHARGE/STICK PROP., MODUL.065
CLASS 1, BLACK POWDER BRASEPAD
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SERIES 5, MODULAR CHARGE/STICK PROP., MODUL.Q66
200 CLASS 1., BLACK POWDER BRSEPRD
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SERIES S, MODULAR CHARGE/STICK PROP., MODUL.067
200 CLRSS 1, BLACK POWDER BASEPAD »
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SERIES R, MODULAR CHARGE/STICK PROP., MODUL.DB68
200 CLNSS S5, BLACK POWDER BRSEPAD
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“SERIES 6. HMODULAR CHARGE/STICK PROP., MODUL.0Q6S8
co CLASS 5, BLACK POWDER BASEPAD
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CERIES 6, MODULAR CHARGE/STICK PROP., MODUL.@€E9

CLASS S, BLACK POWDER BASEPAD

S i

2t 30 35 10
TIME (MS)

SERIFS 6, MODULAR CHARGE/STICK PROP., MODUL.069

CLASS S5, BLACK POWDER BASEPAD
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SERIES 6, MODULAR CHARGE/STICK PROP., MODUL.0O70
CLASS 5, BLACK POWDER RASEPAD
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SERIES 7, MODULAR CHARGE/STICK PROP., MODUL .074 ]
500 NO BRSEPAD ON CHRRGE
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SERIES 7,

300

MODULAR CHARGE/STICK PROP., MODUL.075

NO BASEPAD ON CHARGE

280
260+
2401
220+
2001
180
1RQ
180
120
§03-
fn
[SAR

1o

() | dmabamtiniamy

see o

" .,
W - il "'?vb’n*r”‘

“‘.’l co =T T ¥ 1 1
265 270 278 280 285 290 295
TIME (MS)

SERIES 7,

60+

MODULAR CHARGE/STICK PROP.,

MODUL.075
NO BASEPAD ON CHARGE
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SERIES 7, MODULRR CHRRGE/STICK PROP., MODUL.Q76

NO BASEPRD C!. CHRRGE
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SERIES 7, MODULAR CHARGE/STICK PROP., MODUL.076
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SERIES 8, MODULRR CHRRGE/STICK PROP., MODUL.®283
200, CBI BrSEPND ON FRONTEND OF MODULE Ao
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SERIES 9, MODULAR CHARGE/STICK PROP., MODUL.080
CB%OQQSEPHD NT_BACKEND OF EACH MODULE--3 BASEPNDS
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